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1. INTRODUCTION

Let X, Y be compact topological spaces, and let S be a linear space of
bivariate functions f(x,y) from X X Y to R. For a given M c S, let M x and
My be sets of univariate functions defined on X and Y, respectively, by

M x = {I(·,y):fEM,yE Y},

M y = {I(x, ·):fEM, xEX},

and let {Sx' 11·llx}, {Sy, 11·lly} be normed linear spaces such that M x c Sx'
Myc Sy. Then for each y E Y, f(·,y) E M x ' we can write

Ilf(·,y)llx = sup (f("y), v(· »x,
VEU(S})

(1.1 )

where S: is the topological dual space of Sx' U(Si) denotes the unit ball

and II . II: is the dual norm. For all fE M, Y E Y let us define the sets

Vy(f) = {v E U(Si), Ilfllx = <f, v)x}'

and for each y E Y, let vyE Vi!). Then we may consider v to be the
bivariate function vex, y) defined by

vex, y) = vy(x), xEX,yE Y;

we denote by V(f) the (convex) set of all bivariate functions which may be
defined in this way, so that

V(f) = {v: v(.,y) E Vy(f), for all y E Y}.
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We will restrict consideration in what follows to sets M and corresponding
normed linear spaces for which

all IE M, v E V(f).

Under this assumption, it is possible to embed M in a linear space S which is
equipped with the norm

11/(x,Y)11 = 1111./(-, ')llxlly

and therefore to define the approximation problem

find IE M to minimise 11/11.

(1.2)

(1.3)

This is a mixed-norm bivariate approximation problem. Examples of such
problems have been given in [2, 6]: in particular in [2] a characterization is
given of a mixed-norm problem involving an L) and an L oo norm, which has
applications in the study of integral transforms. The purpose of this paper is
to consider in some generality the characterization of solutions to mixed­
norm approximation problems in terms of properties of the individual norms.
The analysis is carried out for bivariate approximation, but the results
readily generalise to functions of an arbitrary number of variables in an
obvious way.

The most convenient way of defining a particular subset M of S is through
an appropriate parameterization. We will assume therefore that M is the
family of functions

M = {f(x,y, a), a ERn},

where I(x, Y, a) is a given mapping from X X Y X R n into R. (The parameter
space could in fact be any real Banach space; however little is lost, and some
simplification is gained, by retaining finite dimensionality.) Then the problem
(1.3) may be restated as

find aERn to minimise 11/(a)11 (1.4 )

where I(a): R n --+ M. For all a ERn, we will write VJa) for Vy(f(a», V(a)
for V(f(a», and will denote by W(a) the set

W(a) = {u E U(Sn, Ilhll = (h, u)y}, (1.5)

where h(y) = II/(a)lIx' Y E Y, and S: is the dual space of Sy.
In the next section, we establish necessary conditions in terms of V and W

for solutions to some general subclasses of the problem (1.4). When M is
convex, sufficiency results are also obtained, and as a consequence of this,
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precise characterizations of best approximations can be given. The results
are presented in terms of the partial derivatives of j with respect to the
components of a, which are assumed to exist and to be continuous
everywhere; this global assumption may in fact be weakened, and replaced
by a local requirement, but we will not draw any distinction. The method of
attack gives a form for these results which seems the most useful from a
practical point of view, as a check may be made on the conditions in a
straightforward manner. As final pieces of general notation, we will use gi to
denote oj/oa p i = 1,2,... , n, where ai is the ith component of a, and l(c) to
denote 2.:7= I Ci gi' for any cERn. The explicit dependence of 1, gi (and other
quantities) on a will often be suppressed, when no confusion can arise.

2. CONDITIONS FOR A BEST ApPROXIMATION

In order to derive conditions in a convenient form, it is clearly necessary
to exploit the special properties which are possessed by the functions
involved in (1.4). In particular, we will make use (both implicit and explicit)
of the fact that the assumption that j(a) is continuously differentiable leads
to Ilj(a)lIx being locally Lipschitz for each y E Y, and thus possessing a
generalized gradient. For convenience, these properties are now defined.

DEFINITION L A function ~(a): R n
~ R is said to be locally Lipschitz if

every point a ERn admits a neighbourhood N such that, for some constant
K,

for all aI' a2E N.

Let ~ be locally Lipschitz, and let a be any point in R n•

DEFINITION 2. The generalized directional derivative of ~ at a in the
direction c is given by

~O(a; c) = lim sup[~(al + yc) - ~(al) l/y.
al~a

y~o+

DEFINITION 3. The generalized gradient of ¢ at a, denoted by o¢(a), is
the set of all z ERn satisfying

n

o .) \'¢ (a, c ~ i- cizp
i~1

for all cERn.
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If ~(a) is convex, or continuously differentiable at a, then a~(a) is, respec­
tively, the subdifferential at a in the sense of convex analysis, or the vector of
partial derivatives of ~(a) with respect to the components of a (see Clarke
[3, 4]).

LEMMA 1. Let y E Y be arbitrary. Then Ilf(a)llx is a locally Lipschitz
function, with the generalized gradient at a given by

Proof Let cERn, llell = 1, be arbitrary, and let y> O. Then if v E V"'

11/(a + yc)llx -llf(a)llx ~ U(a + yc), v)x - U(a), v)x

= y(l(c), v)x + o(y).

Also, if v(y) E Vy(a + yc),

11/(a + yc)lIx = U(a + yc), v(Y)x

~ Ilf(a)llx + y(l(c), v(Y)x + o(y).

Thus

(l(c), v)x +0(1) ~ [1/(a + yc)llx -11/(a)llx
y

~ (l(c), v(Y)x +0(1). (2.2)

By the weak * compactness of the unit ball in S; (Alaoglu-Bourbaki
theorem, for example Holmes [5]) there exists a sequence {Yj} ---> 0 and
vE S; such that

(m, v(y)x ---> (m, v)x

for all mE Sx' Also

as j ---> 00,

o~ Ilf(a)lIx - U(a), v(Y)x

~ II/(a + yc)llx - U(a + yc), v(Y)x +O(y)

~ O(y)

and so vE Vy • Letting y---> 0 in the inequalities to (2.2) along the sequence
lYj}' we have the limiting value of the right-hand side as

(l(c), v)x = max(l(c), v)x
VEV y
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It follows that we must have
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ll'm Ilf(a + yc)llx -llf(a)llx - (l()- max c, v x.
y~o+ Y VEV"

(2.3)

Thus, for any y E Y, Ilf(a )llx is a locally Lipschitz function, with generalized
gradient given by the set of z ERn satisfying

n n

max L c j ( gil v)x? 2: CjZ j
VEVYj=1 ;=1

for all C ERn. The result (2.1) follows.
Although the above lemma is proved for Ilfllx' it is evident that an

equivalent result holds for any norm on the elements of M. A necessary
condition for a to solve (1.4) (the existence of a zero generalized gradient) is
therefore readily available in terms of the elements of S *, the dual space of
S. However, to obtain such a result in terms of properties of the individually
occurring normed spaces forces some restrictions to be placed on (1.4), and
it is convenient to consider separately some special cases. Perhaps the most
straightforward of these arises when the norm on X may be assumed to be
smooth at the points of interest.

THEOREM 1. Let a solve (1.4), and let 11·llx be smooth at f(a) for all
y E Y. Then there exists w E W such that

i = 1,2,..., n, (2.4 )

for all v E V.

Proof By the smoothness assumption, Ilf(a)llx is differentiable at a for
all y E Y, and the generalized gradient (2.1) is just the unique vector in R n

with the ith component

i= 1,2,... , n

for any v y E Vy , all y E Y. If Ilf(a)11 is a minimum, then 1IIIf(a)llxlly is a
minimum over all Ilf(a)llx' The result (2.4) is therefore an immediate conse­
quence of applying the appropriate minimum norm necessary condition (or
equivalently applying Lemma 1) to 11·lly (see, for example, [7]).

THEOREM 2. Let M be convex, let (2.4) hold at a, and let 11·llx be
smooth at a for all y E Y. Then a solves (1.4).

Proof Let the conditions be satisfied, and let c ERn be arbitrary. Then
for allp" 0 < p, < 1, the convexity assumption gives
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1
Ilf(a + c)II-lIf(a)11 ~ - (lIf(a +,uc)II-llf(a)ll)

,u

1
~ - <lIf(a +,uc)llx -llf(a)llx' w)y (2.5)

,u

for all wE W. Thus by Taylor expansion

Ilf(a +c)II-llf(a)11 ~ W(c), v)x' w)y +0(1) (2.6)

for all v E V. Since this inequality holds on letting ,u -4 0, the result follows.
When II ·lIx cannot be assumed smooth, it is necessary to restrict S y or

11·lly in some way. An important requirement, which has the effect of
allowing the generalized gradient of Ilf(a)1I to be given in an appropriate
form, is the condition that 11·lly be monotonic in the sense that if gJy),
g2(y) E Sy with Igl(Y)1 ~ Ig2(y)1 for all y E Y, then II gl(y)lly ~ II g2(y)III'
The important consequence of monotonicity for our purposes is the
following. Let s E S, let v be such that v(x, y) E U(SJ) for each y E Y, and
let wE U(Sn Then

I«s, v)x' w)yl ~ II<s, v)xlll

~llsll·

The next theorem is proved using approximation theoretic techniques, but
the result could also have been obtained by construction of the generalized
gradient of Ilf(a)ll.

THEOREM 3. Let 11·111 be monotonic, and let a solve (1.4). Then

Proof Let a solve (1.4) but (2.7) not be satisfied. Then by the theorem
on linear inequalities [I], there exists c ERn, 15 >°such that

for all v E V, w E W.

Let v E V, wE W, and for any y> 0, v(y) E V(a + yc), w(y) E W(a + yc) all
be arbitrary. Then

Ilf(a + yc)1I = «f(a + yc), v(y)x, w(y)1

= «f(a), v(y)x' w(Y)y

+ y«I(c), v(Y)x' w(Y)y + o(y)
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Now if s E U(S),
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<; 11/(a)11 + y«l(c), v(Y)x, W(Y)y + o(y)

<; 11/(a)ll- yt5 + y«l(c), v(Y)x' w(Y)y

- y«l(c), v)x, W)y +o(y). (2.8)

by the monotonicity assumption, so that «s, v(y)x' w(Y)y E U(S*), where
S* is the dual space of S. By the weak* compactness of U(S*), there exists
a positive sequence {Yj} ---. 0 such that {«s, v(yJ)x, w(Yj)Y} is convergent,
for all s E S. In addition

0<; 11/(a)ll- «/(a), v(y)x' w(Y)y

= «f, v)x, w)y - «/(a + yc), v(Y)x' w(Y)y + O(y)

= «I(a + yc), v)x' w)y -11/(a + yc)11 + O(y)

<; O(y).

Thus the limiting functional in the above net is one for which 11/(a)11 is
attained, and so has the form «s, v)x, w)y for some v E V, wE W. Put
v = v, W = w in (2.8) and let y ---.0 along the sequence {Yj}' For y sufficiently
small, we contradict the fact that a solves (1.4) and the theorem is proved.

THEOREM 4. Let M be convex, let II ·11 y be monotonic, and let (2.7) hold
at a. Then a solves (1.4).

Proof This is virtually identical with the proof of Theorem 2, with (2.6)
following in this case by the monotonicity assumption.

It is possible to give appropriate necessary conditions in the absence of
both smoothness and monotonicity, but subject to the condition that the
space S y be finite dimensional. This is the substance of the following
theorem, which uses results from the theory of locally Lipschitz
programming.

THEOREM 5. Let Sy = R m
, and let a solve (1.4). Then there exists v E V,

WE W such that

«g;,v)x'W)y=O, i= 1,2,... ,n. (2.9)

Proof We can take y= {YI'Y2, ... ,Ym}' Then the problem (1.4) may be
posed as follows.

find a ERn, hE R m to minimise Ilhlly
subject to hj = 11/(a)llx,j' j = 1,2,... , m,

(2,10)
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where hj is thejth component of hand Ilf(a)llx.j denotes Ilf(a)lIx evaluated at
Y =Yj' This is a nonditTerentiable optimization problem in the n +m
variables a, h with a convex objective function, and m equality constraints,
the constraint functions being locally Lipschitz, by Lemma 1. If all the
functions involved are considered as functions of (n ERn +m, we have the
generalized gradients

aIIhll y= jz E Rn
+

m
; Zi = 0, i = 1,2,..., n, Zi+n = Wi' i = 1,2, , m, wE W},

o(llf(a)llx.j - h) = {z E R n +m
: Zi = (gi, vj)x' i = 1,2, , n,

j = 1,2,..., m, where gi denotes gi evaluated at Yj' and V
j == Vy. Then by

.I

Theorem 1 of Clarke [4], if (~) solves (2.10), there exist numbers ,.1,0) 0, Aj ,

j = 1,2,... , m (Lagrange multipliers) not all zero such that

m°E ,.1,00 IIhll y+ 2: Ajo(llf(a)llx,j - hj),
j=l

so that

m

2: Aj ( gi, vj)x = 0,
j=l

i = 1,2,... , n,

i = 1,2,... , m

(2.11 )

(2.12 )

for some vj E Vj, j = 1, 2,... , m, and some w E W. It follows from (2.12) that
Ao i= 0, and so substituting for A into (2.11) gives the required result.

THEOREM 6. Let Sy = R m, let M be convex, and let (2.9) hold with
wj ) 0, j = 1,2,..., m, Then a solves (1.4).

Proof Exactly as in the proof of Theorem 2, we obtain the inequality
(2.5). Now if v, w) °satisfy (2.9),

(1If(a +,llc)llx' w)y ) «I(a +,llc), v)x' w)y

so that (2.6) also holds and the result follows.
In fact, monotonicity of 11·lly is the natural condition which allows (2.9) to

be both necessary and sufficient (without further qualification) for a to solve
(1.4) when M is convex and S y = R m. Under this assumption, a solves (2.10)
if and only if a solves (2.10) with the equality constraints replaced by the
inequality constraints

Ilf(a)llx.j:::; hj' j= 1,2,... , m,



40 G. A. WATSON

for we can reduce any of the hj values to force equality to hold without
raising the value of II h II y. It follows (for example, [4]) that the Lagrange
multipliers Aj,j = 1,2,..., m must be non-negative, and so, by (2.12) we must
have wj >0, j = 1,2,..., m.

3. EXAMPLES

In this final section, we illustrate the application of the theorems by taking
some specific examples of pairs of normed linear spaces. First, let M x'

II-Ilx c Lp(X), My, 11·lly c Lq(Y), 1 <p, q < 00, with X and Y (say) intervals
of the real line. Then (1.4) is

( ( )

q/p I/q

find a E R n to minimize t t If(x,y, a)IP dx dY).

If Ilfll > 0, then the set W contains the unique element

w(y) = IlfI11- 1 1Ifll l
-

q
•

Also if Ilfllx >0 for all Y E Y, then V contains the unique element

v(x,y) = sign(f) IfI P
-

1 Ilflli-p
•

Theorem 1 applies, and the condition (2.4) is easily seen to be

LIlfII1-P t g/ sign(f) IfI P
-

1 dx dy = 0, i = 1,2,... , n.

Of course if p = q, we recover the result which would be obtained directly by
treating the problem as one in L p(X X Y).

Now let Sx=R/, X= {xl'Xz'''''x/}, normed by the L 1 norm, and let
Sy=R m, Y= {Yl'Yz""'Ym} normed by the elliptic norm Ilhll}=(h,Gh)ro
where G is an m X m symmetric positive definite matrix (this norm need not
be monotonic). Let !jk denote f(xj,Yk). Then if IIfll '* 0, W is just the
singleton

where hk= L~= 1 l.I}kl, k = 1,2,..., m. Also
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Then the condition of Theorem 5 is: there exists v E V such that
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m ,

L 2: Vjk g,(Xj ,Yk) Wk = 0,
k= 1 j= I

i= 1,2,... , n.

Finally, let Mx' IHx eLl (X, .E,,u), where (X,.E,,u) is a finite measure
space, and let My, 11·lly c C(Y), where Y is a compact Hausdorff space.
Then (1.4) is

find a ERn to minimise max J" I/(x, Y, a)1 d,u(x). (3.1)
YEY x

At a ERn, define the sets

Zy= lxEX:!=OI forall yE Y,

K = 1y E Y: 1I/IIx = 11/111·

THEOREM 7. Let a solve (3.1) with ,u(Zy) = 0, all y E Y. Then there exist
t ~ n + 1 points 1Yl' Y2 ,... , Yll E K and a nontrivial vector AE R I, Aj >0,
j = 1,2,... , t, such that

1

.2: Aj r gi(X,Yj) sign(f(x'Yj» d,u(x) = 0,
j=l ·x

Proof We have for all Y E Y

i = 1,2,... , n.

Vy= lVELw(X,.E,,u):lvl~ l,v=sign(f),xEX-Z,,1

so that

V = lv(x,y): v("Y) ELw(X, .E,,u), v("Y) = sign(f), x E X - z",

Iv I~ 1, x E X, yEn.

Also

W = convlJ(y), Y E Kl

where (g( y), J( Yo»y = g( Yo), Yo E Y. If ,u(Zy) = 0, all y E Y, then for all
vE V,

(gi' v)x = r gi sign(f) d,u(x),
oX

i = 1,2,..., n.

Thus we have Theorem 1 holding, and the result follows from (2.4), the
definition of W, and Caratheodory's theorem.
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